Dissemin is shutting down on January 1st, 2025

Published in

Rockefeller University Press, Journal of Experimental Medicine, 5(218), 2021

DOI: 10.1084/jem.20190835

Links

Tools

Export citation

Search in Google Scholar

ILC3s control splenic cDC homeostasis via lymphotoxin signaling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα1β2-expressing Rorgt+ ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα+CD4+Esam+ cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα+CD4+Esam+ cDC2s required continuous lymphotoxin input. This latter property made Sirpα+CD4+Esam+ cDC2s uniquely susceptible to pharmacological interventions with LTβR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα1β2-expressing Rorgt+ ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis.