Published in

IOP Publishing, Nanotechnology, 47(32), p. 475101, 2021

DOI: 10.1088/1361-6528/abe892

Links

Tools

Export citation

Search in Google Scholar

The ROS-generating photosensitizer-free NaYF4:Yb,Tm@SiO2 upconverting nanoparticles for photodynamic therapy application

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract In this work we adapt rare-earth-ion-doped NaYF4 nanoparticles coated with a silicon oxide shell (NaYF4:20%Yb,0.2%Tm@SiO2) for biological and medical applications (for example, imaging of cancer cells and therapy at the nano level). The wide upconversion emission range under 980 nm excitation allows one to use the nanoparticles for cancer cell (4T1) photodynamic therapy (PDT) without a photosensitizer. The reactive oxygen species (ROS) are generated by Tm/Yb ion upconversion emission (blue and UV light). The in vitro PDT was tested on 4T1 cells incubated with NaYF4:20%Yb,0.2%Tm@SiO2 nanoparticles and irradiated with NIR light. After 24 h, cell viability decreased to below 10%, demonstrating very good treatment efficiency. High modification susceptibility of the SiO2 shell allows for attachment of biological molecules (specific antibodies). In this work we attached the anti-human IgG antibody to silane-PEG-NHS-modified NaYF4:20%Yb,0.2%Tm@SiO2 nanoparticles and a specifically marked membrane model by bio-conjugation. Thus, it was possible to perform a selective search (a high-quality optical method with a very low-level organic background) and eventually damage the targeted cancer cells. The study focuses on therapeutic properties of NaYF4:20%Yb,0.2%Tm@SiO2 nanoparticles and demonstrates, upon biological functionalization, their potential for targeted therapy.