Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 9(118), 2021

DOI: 10.1073/pnas.2022142118

Links

Tools

Export citation

Search in Google Scholar

Glucagon blockade restores functional β-cell mass in type 1 diabetic mice and enhances function of human islets

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Both type 1 and type 2 diabetes are associated with reduced β-cell mass or function, resulting from decreased proliferation and increased apoptosis. Understanding the signals governing β-cell survival and regeneration is critical for developing strategies to maintain healthy populations of these cells in individuals. Both forms of diabetes are associated with hyperglucagonemia and an increased plasma glucagon:insulin ratio. Glucagon excess contributes to metabolic dysregulation of the diabetic state and glucagon receptor antagonism is a potential target area for the treatment and prevention of diabetes. Our studies presented here suggest that blockade of glucagon signaling lowers glycemia in mouse models of type 1 diabetes while enhancing formation of functional β-cell mass and production of insulin-positive cells from α-cell precursors.