Published in

MDPI, International Journal of Molecular Sciences, 4(22), p. 2150, 2021

DOI: 10.3390/ijms22042150

Links

Tools

Export citation

Search in Google Scholar

A Review of Clinical Outcomes of CAR T-Cell Therapies for B-Acute Lymphoblastic Leukemia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Introduction: Treatment of relapsed and refractory (R/R) B acute lymphoblastic leukemia (B-ALL) represents an unmet medical need in children and adults. Adoptive T cells engineered to express a chimeric antigen receptor (CAR-T) is emerging as an effective technique for treating these patients. Areas covered: Efficacy and safety of CAR-T therapy in R/R B-ALL patients. Expert opinion: CD19 CAR-T infusion induce high CR rates in patients with poor prognosis and few therapeutic options, while real-life data demonstrate similar results with an interestingly lower incidence of grade 3/4 toxicity. Nevertheless, despite impressive in-depth responses, more than half of patients will experience a relapse. Therefore, rather than using CAR-T cell therapy as a stand-alone option, consolidation with allogeneic stem-cell transplant (Allo-SCT) after CAR-T treatment might increase long-term outcome. Moreover, CD19 is one target, but several other targets are being examined, such as CD20 and CD22 and dual-targeting CARs or combination therapy. Another issue is the time consuming process of CAR-T engineering. New platforms have shortened the CAR-T cell manufacturing process, and studies are underway to evaluate the effectiveness. Another way to mitigate waiting is the development of allogeneic “off the shelf” therapy. In conclusion, CD19-targeted CAR-modified T-cell therapy has shown unprecedented results in patients without curative options. Future work focusing on target identification, toxicity management and reducing manufacturing time will broaden the clinical applicability and bring this exciting therapy to more patients, with longer-term remissions without additional Allo-SCT.