Published in

MDPI, Crystals, 2(11), p. 215, 2021

DOI: 10.3390/cryst11020215

Links

Tools

Export citation

Search in Google Scholar

Photocatalytic Decolorization of Methyl Red on Nanoporous Anodic ZrO2 of Different Crystal Structures

Journal article published in 2021 by Ewa Wierzbicka ORCID, Karolina Syrek ORCID, Klaudia Mączka, Grzegorz D. Sulka ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

High surface area, self-organized nanoporous ZrO2 arrays with perfect adhesion to the Zr substrate were synthesized by anodization in an aqueous electrolyte containing (NH4)2SO4 and NH4F. The obtained semiconductor materials were tested as photocatalysts for decolorization of the methyl red (MR) as a model azo dye pollutant. It was demonstrated that as-synthesized anodic ZrO2 anodic layers are already crystalline and, therefore, do not require further thermal treatment to provide a high photocatalytic performance. However, photocatalytic efficiency could be improved by annealing at a relatively low-temperature of 350 °C. Higher annealing temperatures caused a gradual drop of photocatalytic activity. The photocatalytic behavior was correlated with the crystal phase transformation in anodic ZrO2. It was found that higher photocatalytic activity was observed for the tetragonal phase over the monoclinic phase (predominant at elevated temperatures). It results from the optimal and complex electronic structure of annealed ZrO2 with three different energy states having absorption edges at 2.0, 4.01 and 5.28 eV.