Dissemin is shutting down on January 1st, 2025

Published in

arXiv, 2020

DOI: 10.48550/arxiv.2008.12584

Nature Research, Nature Communications, 1(12), 2021

DOI: 10.1038/s41467-021-21452-5

Links

Tools

Export citation

Search in Google Scholar

Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Direct measurement of local phonon dispersion in individual nanostructures can greatly advance our understanding of their electrical, thermal, and mechanical properties. However, such experimental measurements require extremely high detection sensitivity and combined spatial, energy and momentum resolutions, thus has been elusive. Here, we develop a four-dimensional electron energy loss spectroscopy (4D-EELS) technique based a monochromated scanning transmission electron microscope (STEM), and present the position-dependent phonon dispersion measurement in individual boron nitride nanotubes (BNNTs). Our measurement shows that the unfolded phonon dispersion of multi-walled BNNTs is close to hexagonal-boron nitride (h-BN) crystals, suggesting that interlayer coupling and curved geometry have no substantial impacts on phonon dispersion. We also find that the acoustic phonons are extremely sensitive to momentum-dependent defect scattering, while optical phonons are much less susceptible. This work not only provides useful insights into vibrational properties of BNNTs, but also demonstrates huge prospects of the developed 4D-EELS technique in nanoscale phonon dispersion measurements.