Published in

Oxford University Press, Geophysical Journal International, 1(226), p. 114-130, 2021

DOI: 10.1093/gji/ggab072

Links

Tools

Export citation

Search in Google Scholar

Advanced three-dimensional electromagnetic modelling using a nested integral equation approach

Journal article published in 2021 by Chaojian Chen ORCID, Mikhail Kruglyakov ORCID, Alexey Kuvshinov ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

SUMMARY Most of the existing 3-D electromagnetic (EM) modelling solvers based on the integral equation (IE) method exploit fast Fourier transform (FFT) to accelerate the matrix–vector multiplications. This in turn requires a laterally uniform discretization of the modelling domain. However, there is often a need for multiscale modelling and inversion, for instance, to properly account for the effects of non-uniform distant structures and, at the same time, to accurately model the effects from local anomalies. In such scenarios, the usage of laterally uniform grids leads to excessive computational loads, in terms of both memory and time. To alleviate this problem, we developed an efficient 3-D EM modelling tool based on a multinested IE approach. Within this approach, the IE modelling is first performed at a large domain and on a (laterally uniform) coarse grid, and then the results are refined in the region of interest by performing modelling at a smaller domain and on a (laterally uniform) denser grid. At the latter stage, the modelling results obtained at the previous stage are exploited. The lateral uniformity of the grids at each stage allows us to keep using the FFT for the acceleration of matrix–vector multiplications. An important novelty of the paper is the development of a ‘rim domain’ concept that further improves the performance of the multinested IE approach. We verify the developed tool on both idealized and realistic 3-D conductivity models, and demonstrate its efficiency and accuracy.