Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6536(371), p. 1379-1382, 2021

DOI: 10.1126/science.abf4896

Links

Tools

Export citation

Search in Google Scholar

Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Halting transmission The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein binds to host cells and initiates membrane fusion and cell infection. This stage in the virus life history is currently a target for drug inhibition. De Vries et al. designed highly stable lipoprotein fusion inhibitors complementary to a conserved repeat in the C terminus of S that integrate into host cell membranes and inhibit conformational changes in S necessary for membrane fusion. The authors tested the performance of the lipoproteins as a preexposure prophylactic in a ferret-to-ferret transmission study. Intranasal administration of the peptide 2 days before cohousing with an infected ferret for 24 hours completely protected animals in contact from infection and showed efficacy against mutant viruses. Because ferrets do not get sick from SARS-CoV-2, disease prevention could not be tested in this model. Science , this issue p. 1379