Published in

MDPI, Sensors, 4(21), p. 1377, 2021

DOI: 10.3390/s21041377

Links

Tools

Export citation

Search in Google Scholar

Digitally Controlled Oscillator with High Timing Resolution and Low Complexity for Clock Generation

Journal article published in 2021 by Duo Sheng, Wei-Yen Chen, Hao-Ting Huang, Li Tai
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This paper presents a digitally controlled oscillator (DCO) with a low-complexity circuit structure that combines multiple delay circuits to achieve a high timing resolution and wide output frequency range simultaneously while also significantly reducing the overall power consumption. A 0.18 µm complementary metal–oxide–semiconductor standard process was used for the design, and measurements showed that the chip had a minimum controllable timing resolution of 4.81 ps and power consumption of 142 µW with an output signal of 364 MHz. When compared with other designs using advanced processes, the proposed DCO demonstrated the best power-to-frequency ratio. Therefore, it can output a signal at the required frequency more efficiently in terms of power consumption. Additionally, because the proposed DCO uses digital logic gates only, a cell-based design flow can be implemented. Hence, the proposed DCO is not only easy to implement in different processes but also easy to integrate with other digital circuits.