Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Nuclear Fusion, 4(61), p. 046046, 2021

DOI: 10.1088/1741-4326/abe697

Links

Tools

Export citation

Search in Google Scholar

The impact of ELM mitigation on tungsten source in the EAST divertor

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Divertor tungsten (W) erosion source during edge localized mode (ELM) bursts in EAST is investigated based on optical emission spectroscopy on atomic neutral tungsten line emission at 400.9 nm. Both temporal evolution and total source strength are analyzed and compared in three different ELM mitigation schemes including natural ELMs, resonant magnetic perturbations (RMP) and 2.45 GHz lower hybrid wave (LHW). The mitigation of W source caused by single ELM impact at the divertor target is mainly attributed to the reduction of the W source production in the ELM decay phase. However, with the increase of ELM frequency, the time-averaged intra-ELM W source during an ELM cycle rises and dominates the evolution of the total W source with increasing fraction, which exhibits strong correlation with the core W level in the RMP scheme. In the natural ELM scheme, the pedestal electron temperature is found not only to control the effective W sputtering yield at target during ELMs, thus influencing the intra-ELM W source, but also to be related to the delay time between the divertor ELM WI emission and the core extreme ultraviolet bolometer (XUV) signal which can scale with the parallel ion transit time. Furthermore, the delay time is found to have more consistent dependence on the pedestal plasma collisionality. The rise time of intra-ELM WI emission increases when RMP or LHW is applied, revealing a different ELM mitigation mechanism in comparison with the natural ELM scheme. The temporal profiles of the intra-ELM WI emission in different ELM mitigation schemes are compared and the potential mechanism is discussed. Besides, the ELM mitigation effects with RMP are found to be asymmetric at the outer and inner divertor targets, which is characterized by the different variations of the intra-ELM W source strength and the rise time of WI emission with the ramp-up of RMP coil current. Divertor partial detachment is achieved simultaneously with strong ELM mitigation under a suitable RMP phase difference without additional gas puff.