Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Marine Science and Engineering, 2(9), p. 176, 2021

DOI: 10.3390/jmse9020176

Links

Tools

Export citation

Search in Google Scholar

CDOM Spatiotemporal Variability in the Mediterranean Sea: A Modelling Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study investigates the spatial and temporal variability of chromophoric-dissolved organic matter (CDOM) in the Mediterranean Sea. The analysis is carried out using a state-of-the-art 3D biogeochemical model. The model describes the plankton dynamics, the cycles of the most important limiting nutrients, and the particulate and dissolved pools of carbon. The source of CDOM is directly correlated to the dynamics of dissolved organic carbon (DOC) by a fixed production quota. Then CDOM degrades by photobleaching and remineralization. The main innovation of the system is the inclusion of a bio-optical radiative transfer model that computes surface upwelling irradiance, and therefore simulates remotely sensed reflectance (Rrs). Simulation results of three model configurations are evaluated using satellite Rrs, particularly at 412 nm, 443 nm, and 490 nm. All simulations show a winter minimum in Rrs for the considered bands. However, different parameterizations of DOC-release induce a different accumulation of CDOM, especially in the eastern Mediterranean, and a different Rrs signature: a more active microbial loop during summer implies a decrease of Rrs at 412 nm. We demonstrate how the usage of a bio-optical model allows us to corroborate hypotheses on CDOM-cycling based on blue–violet Rrs data, supporting the importance of this complementary data stream with respect to satellite-derived chlorophyll.