Public Library of Science, PLoS ONE, 8(8), p. e72434, 2013
DOI: 10.1371/journal.pone.0072434
Full text: Download
Background Neurons are one of the most structurally and functionally diverse cell types found in nature, owing in large part to their unique class specific dendritic architectures. Dendrites, being highly specialized in receiving and processing neuronal signals, play a key role in the formation of functional neural circuits. Hence, in order to understand the emergence and assembly of a complex nervous system, it is critical to understand the molecular mechanisms that direct class specific dendritogenesis. Methodology/Principal Findings We have used the Drosophila dendritic arborization (da) neurons to gain systems-level insight into dendritogenesis by a comparative study of the morphologically distinct Class-I (C-I) and Class-IV (C-IV) da neurons. We have used a combination of cell-type specific transcriptional expression profiling coupled to a targeted and systematic in vivo RNAi functional validation screen. Our comparative transcriptomic analyses have revealed a large number of differentially enriched/depleted gene-sets between C-I and C-IV neurons, including a broad range of molecular factors and biological processes such as proteolytic and metabolic pathways. Further, using this data, we have identified and validated the role of 37 transcription factors in regulating class specific dendrite development using in vivo class-specific RNAi knockdowns followed by rigorous and quantitative neurometric analysis. Conclusions/Significance This study reports the first global gene-expression profiles from purified Drosophila C-I and C-IV da neurons. We also report the first large-scale semi-automated reconstruction of over 4,900 da neurons, which were used to quantitatively validate the RNAi screen phenotypes. Overall, these analyses shed global and unbiased novel insights into the molecular differences that underlie the morphological diversity of distinct neuronal cell-types. Furthermore, our class-specific gene expression datasets should prove a valuable community resource in guiding further investigations designed to explore the molecular mechanisms underlying class specific neuronal patterning. ; The authors acknowledge the National Institutes of Health (MH086928-02) (http://www.nimh.nih.gov) and the Thomas F. and Kate Miller Jeffress Memorial Trust for support of this research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Publication of this article was funded in part by the George Mason University Libraries Open Access Publishing Fund.