Published in

European Respiratory Society, European Respiratory Journal, 3(58), p. 2003196, 2021

DOI: 10.1183/13993003.03196-2020

Links

Tools

Export citation

Search in Google Scholar

Lung function and cardiovascular disease: a two-sample Mendelian randomisation study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BackgroundObservational studies suggest an association between reduced lung function and risk of coronary artery disease and ischaemic stroke, independent of shared cardiovascular risk factors such as cigarette smoking. We use the latest genetic epidemiological methods to determine whether impaired lung function is causally associated with an increased risk of cardiovascular disease.Methods and findingsMendelian randomisation uses genetic variants as instrumental variables to investigate causation. Preliminary analysis used two-sample Mendelian randomisation with lung function single nucleotide polymorphisms. To avoid collider bias, the main analysis used single nucleotide polymorphisms for lung function identified from UKBiobank in a multivariable Mendelian randomisation model conditioning for height, body mass index and smoking.Multivariable Mendelian randomisation shows strong evidence that reduced forced vital capacity (FVC) causes increased risk of coronary artery disease (OR 1.32, 95% CI 1.19–1.46 per standard deviation). Reduced forced expiratory volume in 1 s (FEV1) is unlikely to cause increased risk of coronary artery disease, as evidence of its effect becomes weak after conditioning for height (OR 1.08, 95% CI 0.89–1.30). There is weak evidence that reduced lung function increases risk of ischaemic stroke.ConclusionThere is strong evidence that reduced FVC is independently and causally associated with coronary artery disease. Although the mechanism remains unclear, FVC could be taken into consideration when assessing cardiovascular risk and considered a potential target for reducing cardiovascular events. FEV1 and airflow obstruction do not appear to cause increased cardiovascular events; confounding and collider bias may explain previous findings of a causal association.