Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Chemical Research in Toxicology, 9(21), p. 1760-1769, 2008

DOI: 10.1021/tx800128d

Links

Tools

Export citation

Search in Google Scholar

Microprobe XRF mapping and XAS investigations of the intracellular metabolism of arsenic for understanding arsenic-induced toxicity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Arsenic (As) is responsible for mass-poisonings worldwide following the ingestion of As-contaminated drinking water. Importantly, however, As toxicity is exploited in the antileukemia drug, Trisenox (As2O3), which successfully cures 65-80% of patients suffering relapsed acute promyelocytic leukemia. In an effort to determine the intracellular organelle and biomolecular targets of As, microprobe X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XAS) analyses were performed on HepG2 cells following their exposure to high doses of arsenite (1 mM) or arsenate (20 mM). Microprobe XRF elemental mapping of thin-sectioned cells showed As accumulation in the euchromatin region of the cell nucleus (following arsenite exposure) synonymous with As targeting of DNA or proteins involved in DNA transcription. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of arsenite-treated cells, however, showed the predominance of an As tris-sulfur species, providing increased credence to As interactions with nuclear proteins as a key factor in As-induced toxicity. ; Kristie L. Munro, Anna Mariana, Andrejs I. Klavins, Amalanie J. Foster, Barry Lai, Stefan Vogt, ZhongHou Cai, Hugh H. Harris and Carolyn T. Dillon ; Copyright © 2008 American Chemical Society