Dissemin is shutting down on January 1st, 2025

Published in

World Scientific Publishing, Journal of Advanced Dielectrics, 01(11), p. 2150004, 2021

DOI: 10.1142/s2010135x21500041

Links

Tools

Export citation

Search in Google Scholar

Ultralow switching voltage and power consumption of GeS2 thin film resistive switching memory

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The coming Big Data Era requires progress in storage and computing technologies. As an emerging memory technology, Resistive RAM (RRAM) has shown its potential in the next generation high-density storage and neuromorphic computing applications, which extremely demand low switching voltage and power consumption. In this work, a 10 nm-thick amorphous GeS2 thin film was utilized as the functional layer of RRAM in a combination with Ag and Pt electrodes. The structure and memory performance of the GeS2-based RRAM device was characterized — it presents high on/off ratio, fast switching time, ultralow switching voltage (0.15 V) and power consumption (1.0 pJ and 0.56 pJ for PROGRAM and ERASE operations, respectively). We attribute these competitive memory characteristics to Ag doping phenomena and subsequent formation of Ag nano-islands in the functional layer that occurs due to diffusion of Ag from electrode into the GeS2 thin film. These properties enable applications of GeS2 for low energy RRAM device.