Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Atmosphere, 2(12), p. 232, 2021

DOI: 10.3390/atmos12020232

Links

Tools

Export citation

Search in Google Scholar

Projected Characteristic Changes of a Typical Tropical Cyclone under Climate Change in the South West Indian Ocean

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

During 2 January 2014, Cyclone Bejisa passed near La Réunion in the southwestern Indian Ocean, bringing wind speeds of 41 m s−1, an ocean swell of 7 m, and rainfall accumulations of 1025 mm over 48 h. As a typical cyclone to impact La Réunion, we investigate how the characteristics of this cyclone could change in response to future warming via high-resolution, atmosphere–ocean coupled simulations of Bejisa-like cyclones in historical and future environments. Future environments are constructed using the pseudo global warming method whereby perturbations are added to historical analyses from six Coupled Model Intercomparison Project 5 (CMIP5) climate models. These models follow the Intergovernmental Panel for Climate Change’s (IPCC) Representative Concentration Pathways (RCP) RCP8.5 emissions scenario and project ocean surface warming of 1.1–4.2 °C by 2100. Under these conditions, we find that future Bejisa-like cyclones are 6.5% more intense on average and reach their lifetime maximum intensity 2 degrees further poleward. Additionally, future cyclones produce heavier rainfall, with a 33.8% average increase in the median rainrate, and are 9.2% smaller, as measured by the radius of 17.5 m s−1 winds. Furthermore, when surface wind output is used to run an ocean wave model in post, we find a 4.6% increase in the significant wave height.