Published in

European Geosciences Union, Hydrology and Earth System Sciences, 2(25), p. 565-581, 2021

DOI: 10.5194/hess-25-565-2021

Links

Tools

Export citation

Search in Google Scholar

Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The term “flash drought” is frequently invoked to describe droughts that develop rapidly over a relatively short timescale. Despite extensive and growing research on flash drought processes, predictability, and trends, there is still no standard quantitative definition that encompasses all flash drought characteristics and pathways. Instead, diverse definitions have been proposed, supporting wide-ranging studies of flash drought but creating the potential for confusion as to what the term means and how to characterize it. Use of different definitions might also lead to different conclusions regarding flash drought frequency, predictability, and trends under climate change. In this study, we compared five previously published definitions, a newly proposed definition, and an operational satellite-based drought monitoring product to clarify conceptual differences and to investigate the sensitivity of flash drought inventories and trends to the choice of definition. Our analyses indicate that the newly introduced Soil Moisture Volatility Index definition effectively captures flash drought onset in both humid and semi-arid regions. Analyses also showed that estimates of flash drought frequency, spatial distribution, and seasonality vary across the contiguous United States depending upon which definition is used. Definitions differ in their representation of some of the largest and most widely studied flash droughts of recent years. Trend analysis indicates that definitions that include air temperature show significant increases in flash droughts over the past 40 years, but few trends are evident for definitions based on other surface conditions or fluxes. These results indicate that “flash drought” is a composite term that includes several types of events and that clarity in definition is critical when monitoring, forecasting, or projecting the drought phenomenon.