Published in

Oxford University Press, Genome Biology and Evolution, 3(13), 2021

DOI: 10.1093/gbe/evab022

Links

Tools

Export citation

Search in Google Scholar

A naturally heteroplasmic clam provides clues about the effects of genetic bottleneck on paternal mtDNA

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Mitochondrial DNA (mtDNA) is present in multiple copies within an organism. Since these copies are not identical, a single individual carries a heterogeneous population of mtDNAs, a condition known as heteroplasmy. Several factors play a role in the dynamics of the within-organism mtDNA population: among them, genetic bottlenecks, selection, and strictly maternal inheritance are known to shape the levels of heteroplasmy across mtDNAs. In Metazoa, the only evolutionarily stable exception to the strictly maternal inheritance of mitochondria is the doubly uniparental inheritance (DUI), reported in 100+ bivalve species. In DUI species, there are two highly divergent mtDNA lineages, one inherited through oocyte mitochondria (F-type) and the other through sperm mitochondria (M-type). Having both parents contributing to the mtDNA pool of the progeny makes DUI a unique system to study the dynamics of mtDNA populations. Since, in bivalves, the spermatozoon has few mitochondria (4–5), M-type mtDNA faces a tight bottleneck during embryo segregation, one of the narrowest mitochondrial bottlenecks investigated so far. Here, we analyzed the F- and M-type mtDNA variability within individuals of the DUI species Ruditapes philippinarum and investigated for the first time the effects of such a narrow bottleneck affecting mtDNA populations. As a potential consequence of this narrow bottleneck, the M-type mtDNA shows a large variability in different tissues, a condition so pronounced that it leads to genotypes from different tissues of the same individual not to cluster together. We believe that such results may help understanding the effect of low population size on mtDNA bottleneck.