Springer Verlag, Lecture Notes in Computer Science, p. 741-748
DOI: 10.1007/978-3-319-10470-6_92
Full text: Download
Inter-subject variability is a major hurdle for neuroimaging group-level inference, as it creates complex image patterns that are not captured by standard analysis models and jeopardizes the sensitivity of statistical procedures. A solution to this problem is to model random subjects effects by using the redundant information conveyed by multiple imaging contrasts. In this paper, we introduce a novel analysis framework, where we estimate the amount of variance that is fit by a random effects subspace learned on other images; we show that a principal component regression estimator outperforms other regression models and that it fits a significant proportion (10% to 25%) of the between-subject variability. This proves for the first time that the accumulation of contrasts in each individual can provide the basis for more sensitive neuroimaging group analyzes.