Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Physics of the Earth and Planetary Interiors, 3-4(105), p. 167-181

DOI: 10.1016/s0031-9201(97)00089-7

Links

Tools

Export citation

Search in Google Scholar

GPS, earthquakes, the ionosphere, and the Space Shuttle

Journal article published in 1998 by Eric Calais, Éric Calais, J. Bernard Minster ORCID, J. Bernard Minster
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sources such as atmospheric or buried explosions and shallow earthquakes producing strong vertical ground displacements are known to produce infrasonic pressure waves in the atmosphere. Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic waves induce variations of the ionospheric electron density. The Global Positioning System provides a way of directly measuring the Total Electron Content in the ionosphere and, therefore. of detecting such perturbations in the upper atmosphere. In this work, we demonstrate the capabilities of the GPS technique to detect ionospheric perturbations caused by the January 17. 1994, M (sub w) =6.7, Northridge earthquake and the STS-58 Space Shuttle ascent. In both cases, we observe a perturbation of the ionospheric electron density lasting for about 30 m, with periods less than 10 m. The perturbation is complex and shows two sub-events separated by about 15 m. The phase velocities and waveform characteristics of the two sub-events lead us to interpret the first arrival as the direct propagation of 2 free wave, followed by oscillatory guided waves propagating along horizontal atmospheric interfaces at 120 km altitude and below.