Published in

International Union of Crystallography, Journal of Synchrotron Radiation, 2(28), p. 383-391, 2021

DOI: 10.1107/s1600577520016458

Links

Tools

Export citation

Search in Google Scholar

Wave propagation and focusing of soft X-rays by spherical bent microchannel plates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Synchrotron radiation sources have been used to study the focusing properties and angular distribution of X-ray radiation at the exit of spherically bent microchannel plates (MCPs). In this contribution it is shown how soft X-ray radiation at energies up to 1.5 keV can be focused by spherically bent MCPs with curvature radii R of 30 mm and 50 mm. For these devices, a focus spot is detectable at a distance between the detector and the MCP of less than R/2, with a maximum focusing efficiency up to 23% of the flux illuminating the MCP. The soft X-ray radiation collected at the exit of microchannels of spherically bent MCPs are analyzed in the framework of a wave approximation. A theoretical model for the wave propagation of radiation through MCPs has been successfully introduced to explain the experimental results. Experimental data and simulations of propagating radiation represent a clear confirmation of the wave channeling phenomenon for the radiation in spherically bent MCPs.