Published in

De Gruyter, Pure and Applied Chemistry, 11(82), p. 2027-2053, 2010

DOI: 10.1351/pac-con-09-09-18

Links

Tools

Export citation

Search in Google Scholar

Vapor-phase synthesis of one-dimensional ZnS, CdS, and ZnxCd1–xS nanostructures

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

One-dimensional (1D) nanostructures have received prime attention due to their high potential in understanding fundamental physical concepts and constructing nanoscale electronic devices. ZnS and CdS, the well-known direct and wide bandgap semiconductors, have recently attracted significant research interest due to their special properties and applications in sensing, optoelectronics, piezoelectronics, and lasing. This article reviews the most recent activities in ZnS and CdS nanostructures, with an emphasis on the authors’ own results, and on 1D ZnS and CdS nanostructures, especially those synthesized using vapor deposition techniques. The review begins with a survey of ZnS and CdS nanostructures, and then is primarily focused on their 1D nanostructures, syntheses, characterizations, formation mechanisms, and optical and field-emission (FE) properties. Additionally, developments of ZnxCd1–xS composite nanostructures, including nanocombs and zigzag nanowires, are also discussed. Finally, we conclude this review with the perspectives and outlook on the future developments in this field.