Published in

MDPI, International Journal of Environmental Research and Public Health, 4(18), p. 1490, 2021

DOI: 10.3390/ijerph18041490

Links

Tools

Export citation

Search in Google Scholar

The Effect of Dry Carbon Dioxide Bathing on Peripheral Blood Circulation Measured by Thermal Imaging among Patients with Risk Factors of PAD

Journal article published in 2021 by Hanna Zbroja ORCID, Mateusz Kowalski, Anna Lubkowska ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Peripheral artery disease (PAD) is becoming a serious health problem of present times. It appears crucial to explore therapies that might help to restore blood flow or increase tissue oxygenation. The most effective methods of detecting early-stage changes in blood circulation in the extremities need to be identified. The aim of this study was to identify the effect of carbon dioxide (CO2) bathing on peripheral blood circulation measured by thermal imaging among patients with risk factors of PAD and ankle–brachial index (ABI) in the normal range or ABI indicating some or moderate arterial disease (ABI > 0.5). The correlation between surface temperature change and PAD-relevant characteristics was also examined. Forty-six patients who were over 65 years old who had a minimum of two additional PAD risk factors were recruited. A series of ten dry CO2 baths was performed. Thermal images were taken before and after the intervention. The CO2 therapy caused a significant change in the body surface temperature of many body areas. Numerous moderate correlations between temperature change and health-related characteristics were identified. Therefore, patients with PAD risk factors could benefit from CO2 therapy. Improvements in blood flow change the body surface temperature, and these changes could be successfully detected by thermal imaging.