Dissemin is shutting down on January 1st, 2025

Published in

EPL Association, European Physical Society Letters, 3(85), p. 31001, 2009

DOI: 10.1209/0295-5075/85/31001

Links

Tools

Export citation

Search in Google Scholar

Quantitative non-contact dynamic Casimir force measurements

Journal article published in 2009 by Guillaume Jourdan, Astrid Lambrecht ORCID, Fabio Comin, Joël Chevrier
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We show that the Casimir force (CF) gradient can be measured with no contact involved. Results of the CF measurement with systematic uncertainty of 3% are presented for the distance range of 100–600 nm. The statistical uncertainty is shown to be due to the thermal fluctuations of the force probe. The corresponding signal-to-noise ratio equals unity at the distance of 600 nm. Direct contact between surfaces used in most previous studies to determine absolute distance separation is here precluded. Use of direct contact to identify the origin of distances is a severe limitation for studies of the CF on structured surfaces as it deteriorates irreversibly the studied surface and the probe. This force machine uses a dynamical method with an inserted gold sphere probe glued to a lever. The lever is mechanically excited at resonant frequency in front of a chosen sample. The absolute distance determination is achieved to be possible, without any direct probe/sample contact, using an electrostatic method associated to a real time correction of the mechanical drift. The positioning shift uncertainty is as low as 2 nm. Use of this instrument to probe a very thin film of gold (10 nm) reveals important spatial variations in the measurement.