Published in

Optica, Optics Express, 4(29), p. 6069, 2021

DOI: 10.1364/oe.418024

Links

Tools

Export citation

Search in Google Scholar

Thermally-tunable high-Q metamaterial and sensing application based on liquid metals

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Achieving a high Q-factor metamaterial unit for a precision sensing application is highly demanded in recent years, and most of the developed high-performance sensors based on the high-Q metamaterial units are due to the dielectric/magnetic property changes of the substrate/superstrate. In this paper, we propose a completely different sensing metamaterial unit configuration, with good sensing sensitivity and precision properties, based on the thermally tunable liquid metals. Specifically, a basic thermally tunable metamaterial unit, the mercury-inspired split ring resonator (SRR), is firstly presented to theoretically show the magnetic resonance and negative permeability frequency band shift properties under different background temperatures. Then, considering the radiation loss mechanism of the conventional SRR metamaterial unit and based on the physically reliable ability of liquid metals, the modified mercury-inspired Fano and toroidal resonators with a large frequency tuning range and high Q-factor are developed and discussed. The numerical demonstrations have shown that the designed Fano and toroidal resonators have much better sensing precision performances compared to the conventional SRR for the temperature sensing application. The experimental demonstrations have also been used to verify the proposed mercury-based toroidal resonators, and good agreements are achieved.