Published in

Sociedade Brasileira de Química, SBQ, Journal of the Brazilian Chemical Society, 2021

DOI: 10.21577/0103-5053.20210016

Links

Tools

Export citation

Search in Google Scholar

Bioconjugation Between CdTe Quantum Dots and a Cationic Protein: An Analytical Method to Determine Protamine in Drug and Urine Samples

Journal article published in 2021 by Karolayne da Costa, Uéslen Rocha, Tasso Sales, Josué Santos ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

CdTe quantum dots (QD-CdTe) functionalized with mercaptosuccinic acid (MSA) were synthesized in an aqueous medium, varying synthesis time from 0.5 to 4 h. The nanoprobe were characterized by a direct relationship between synthesis time and QD size (2.61-3.04 nm). The QD-CdTe-MSA interacted with protamine (PT), a cationic protein, forming a bioconjugate, thus quenching the photoluminescence intensity and generating an on-off system. The nanoprobe produced at a synthesis time of 1 h (QD-CdTe1) presented PT’s best sensitivity in a succinate buffer (pH = 5). Under the optimized conditions, the proposed method presented a linear range of 0.05-0.5 mg L-1 (10-100 nM), limit of detection (LOD) 0.01 mg L-1 (2 nM), and relative standard deviation (RSD) ≤ 2.01% (n = 10). The interaction of the nanoprobe and PT led to aggregation due to a bioconjugate formation. The systems’ hydrodynamic radius varied from 4.31 nm (QD‑CdTe1) to 30.50 nm for the bioconjugate (QD-CdTe1-PT). The method was sensitive to variation in ionic strength and based on thermodynamic parameters; it was demonstrated that the interaction mechanism occurred preferentially through electrostatic forces. Finally, the method proved to be fast, sensitive, and viable for quantifying PT in drugs and synthetic urine samples with recoveries above 95%.