Published in

Optica, Optics Express, 5(29), p. 6424, 2021

DOI: 10.1364/oe.415987

Links

Tools

Export citation

Search in Google Scholar

Hole array enhanced dual-band infrared photodetection

Journal article published in 2021 by Fei Suo ORCID, Jinchao Tong ORCID, Xiren Chen, Zhengji Xu ORCID, Dao Hua Zhang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Photonic structures have been attracting more attention due to their ability to capture, concentrate and propagate optical energy. In this work, we propose a photon-trapping hole-array structure integrated in a nip InAsSb-GaSb heterostructure for the enhancement of the photoresponse in both near- and mid-infrared regions. The proposed symmetrical hole array can increase the photon lifetime inside the absorption layer and reduce reflection without polarization dependence. Significant enhancements in absorption and photoelectric conversion efficiency are demonstrated in dual bands for unpolarized incidence. The enhancement factors of responsivity at room temperature under zero-bias are 1.12 and 1.33 for the near- and mid-infrared, respectively, and they are increased to 1.71 and 1.79 when temperature drops to the thermoelectric cooling temperature of 220 K. Besides, such an integrated hole array also slightly improves working frequency bandwidth and response speed. This work provides a promising way for high-efficiency polarization-independent photoelectric conversion in different electromagnetic wave ranges.