Published in

MDPI, International Journal of Molecular Sciences, 3(22), p. 1449, 2021

DOI: 10.3390/ijms22031449

Links

Tools

Export citation

Search in Google Scholar

In Situ Preconditioning of Human Mesenchymal Stem Cells Elicits Comprehensive Cardiac Repair Following Myocardial Infarction

Journal article published in 2021 by Woo-Sup Sim ORCID, Bong-Woo Park ORCID, Kiwon Ban ORCID, Hun-Jun Park ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Human bone marrow-derived mesenchymal stem cells (BM-MSCs), represented as a population of adult stem cells, have long been considered as one of the most promising sources for cell-based cardiac regenerative therapy. However, their clinical use has been significantly hampered by low survival and poor retention following administration into failing hearts. Here, to improve the therapeutic effectiveness of BM-MSCs, we examined a novel therapeutic platform named in situ preconditioning in a rat myocardial infarction (MI) model. In situ preconditioning was induced by a combinatory treatment of BM-MSCs with genetically engineered hepatocyte growth factor-expressing MSCs (HGF-eMSCs) and heart-derived extracellular matrix (hdECM) hydrogel. Subsequently, our results demonstrated that in situ preconditioning with cell mixture substantially improved the survival/retention of BM-MSCs in the MI-induced rat hearts. Enhanced retention of BM-MSCs ultimately led to a significant cardiac function improvement, which was derived from the protection of myocardium and enhancement of vessel formation in the MI hearts. The results provide compelling evidence that in situ preconditioning devised to improve the therapeutic potential of BM-MSCs can be an effective strategy to achieve cardiac repair of MI hearts.