Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, The Oncologist, 4(26), p. e715-e718, 2021

DOI: 10.1002/onco.13694

Links

Tools

Export citation

Search in Google Scholar

Landscape of Cyclin Pathway Genomic Alterations Across 5,356 Prostate Cancers: Implications for Targeted Therapeutics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The cyclin pathway may confer resistance to standard treatments but also offer novel therapeutic opportunities in prostate cancer. Herein, we analyzed prostate cancer samples (majority metastatic) using comprehensive genomic profiling performed by next-generation sequencing (315 genes, >500× coverage) for alterations in activating and sensitizing cyclin genes (CDK4 amplification, CDK6 amplification, CCND1, CCND2, CCND3, CDKN2B [loss], CDKN2A [loss], SMARCB1), androgen receptor (AR) gene, and coalterations in genes leading to cyclin inhibitor therapeutic resistance (RB1 and CCNE1). Overall, cyclin sensitizing pathway genomic abnormalities were found in 9.7% of the 5,356 tumors. Frequent alterations included CCND1 amplification (4.2%) and CDKN2A and B loss (2.4% each). Alterations in possible resistance genes, RB1 and CCNE1, were detected in 9.7% (up to 54.6% in neuroendocrine) and 1.2% of cases, respectively, whereas AR alterations were seen in 20.9% of tumors (~27.3% in anaplastic). Cyclin sensitizing alterations were also more frequently associated with concomitant AR alterations.