Published in

Nature Research, Scientific Reports, 1(11), 2021

DOI: 10.1038/s41598-021-82184-6

Links

Tools

Export citation

Search in Google Scholar

Psychophysiological responses to treadwall and indoor wall climbing in adult female climbers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe purpose of the study was to compare the psychophysiological response of climbers of a range of abilities (lower grade to advanced) when ascending identical climbing routes on a climbing wall and a rotating treadwall. Twenty-two female climbers (31.2 ± 9.4 years; 60.5 ± 6.5 kg; 168.6 ± 5.7 cm) completed two identical 18 m climbing trials (graded 4 on the French Sport scale) separated by 1 week, one on the treadwall (climbing low to the ground) and the other on the indoor wall (climbing in height). Indirect calorimetry, venous blood samples and video-analysis were used to assess energy cost, hormonal response and time-load characteristics. Energy costs were higher during indoor wall climbing comparing to those on the treadwall by 16% (P < 0.001, $\upmu _{{\text{p}}}^{2}$ μ p 2 = 0.48). No interaction of climbing ability and climbing condition were found. However, there was an interaction for climbing ability and post-climbing catecholamine concentration (P < 0.01, $\upmu _{{\text{p}}}^{2}$ μ p 2 = 0.28). Advanced climbers’ catecholamine response increased by 238% and 166% with respect to pre-climb values on the treadwall and indoor wall, respectively; while lower grade climbers pre-climb concentrations were elevated by 281% and 376% on the treadwall and indoor wall, respectively. The video analysis showed no differences in any time-motion variables between treadwall and indoor wall climbing. The study demonstrated a greater metabolic response for indoor wall climbing, however, the exact mechanisms are not yet fully understood.