Published in

International Union of Crystallography, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 1(77), p. 158-167, 2021

DOI: 10.1107/s2052520620016571

Links

Tools

Export citation

Search in Google Scholar

The crystal structure of Cu2GeSe3 and the structure-types of the I2-IV-VI3 family of semiconducting compounds

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Almost 50 years after the initial report, the crystal structure of Cu2GeSe3, a I2-IV-VI3 semiconductor, has been revised using modern single-crystal X-ray diffraction data. The structure of this material can be properly described in the monoclinic space group Cc (No. 9) with unit-cell parameters a = 6.7703 (4) Å, b = 11.8624 (5) Å, c = 6.7705 (4) Å, β = 108.512 (6)°, V = 515.62 (5) Å3, Z = 4, rather than in the orthorhombic space group Imm2 (No. 44) with unit-cell parameters a = 11.860 (3), b = 3.960 (1), c = 5.485 (2) Å, V = 257.61 Å3, Z = 2, as originally proposed [Parthé & Garín (1971). Monatsh. Chem. 102, 1197–1208]. Contrary to what was observed in the orthorhombic structure, the distortions of the tetrahedra in the monoclinic structure are consistent with the distortions expected from considerations derived from the bond valence model. A brief revision of the structures reported for the I2-IV-VI3 family of semiconducting compounds (I: Cu, Ag; IV: Si, Ge, Sn; and VI: S, Se, Te) is also presented.