Published in

MDPI, Marine Drugs, 2(19), p. 68, 2021

DOI: 10.3390/md19020068

Links

Tools

Export citation

Search in Google Scholar

Unlocking the Diversity of Pyrroloiminoquinones Produced by Latrunculid Sponge Species

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Sponges of the Latrunculiidae family produce bioactive pyrroloiminoquinone alkaloids including makaluvamines, discorhabdins, and tsitsikammamines. The aim of this study was to use LC-ESI-MS/MS-driven molecular networking to characterize the pyrroloiminoquinone secondary metabolites produced by six latrunculid species. These are Tsitsikamma favus, Tsitsikamma pedunculata, Cyclacanthia bellae, and Latrunculia apicalis as well as the recently discovered species, Tsitsikamma nguni and Tsitsikamma michaeli. Organic extracts of 43 sponges were analyzed, revealing distinct species-specific chemical profiles. More than 200 known and unknown putative pyrroloiminoquinones and related compounds were detected, including unprecedented makaluvamine-discorhabdin adducts and hydroxylated discorhabdin I derivatives. The chemical profiles of the new species T. nguni closely resembled those of the known T. favus (chemotype I), but with a higher abundance of tsitsikammamines vs. discorhabdins. T. michaeli sponges displayed two distinct chemical profiles, either producing mostly the same discorhabdins as T. favus (chemotype I) or non- or monobrominated, hydroxylated discorhabdins. C. bellae and L. apicalis produced similar pyrroloiminoquinone chemistry to one another, characterized by sulfur-containing discorhabdins and related adducts and oligomers. This study highlights the variability of pyrroloiminoquinone production by latrunculid species, identifies novel isolation targets, and offers fundamental insights into the collision-induced dissociation of pyrroloiminoquinones.