Published in

Frontiers Media, Frontiers in Cell and Developmental Biology, (8), 2021

DOI: 10.3389/fcell.2020.620543

Links

Tools

Export citation

Search in Google Scholar

Non-neuronal Role of Acetylcholinesterase in Bone Development and Degeneration

Journal article published in 2021 by Xiaohe Luo, Marianne Lauwers ORCID, Paul G. Layer, Chunyi Wen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Acetylcholinesterase (AChE), an enzyme catalyzing the degradation of acetylcholine, plays an important suppressive role in the cholinergic regulation by terminating the action of acetylcholine. The expression of acetylcholinesterase and other cholinergic components is not restricted to only brain and nerve tissues but can also be found in non-neuronal tissues like the immune system and bone tissue. Primary identification of these components has been achieved. However, the information about their specific functions and underlying molecular mechanisms in bone remains scattered. Here, the physiological process of bone development, homeostasis, and degeneration are introduced. Next, the cholinergic system and its expression in bone tissue is documented. Among them, special attention goes to AChE, as the structure of this enzyme suggests diverse binding affinities, enabled by a peripheral site and a catalytic site. The peripheral site supports the non-enzymatic function of AChE in non-neuronal systems. Based on recent studies, the non-neuronal roles of acetylcholinesterase, both enzymatically and non-enzymatically, in bone development, homeostasis and degeneration are summarized briefly together with potential mechanisms to support these functions. We conclude that AChE may be a potential therapeutic target for bone diseases like osteoporosis.