Published in

American Scientific Publishers, Journal of Nanoscience and Nanotechnology, 4(21), p. 2174-2184, 2021

DOI: 10.1166/jnn.2021.19072

Links

Tools

Export citation

Search in Google Scholar

Preparation and Self-Assembling of PLA-b-PNIPAM-b-PS Triblock Copolymer Thin Films

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Polylactide-b-poly(N-isopropylacrylamide)-b-polystyrene (PLA-b-PNIPAM-b-PS) triblock copolymers (tri-BCPs) with various chemical compositions (block ratio) were prepared from the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. Subsequently, the self-assembling behaviors of these tri-BCP films obtained from spin-coating were investigated by annealing them under different solvent atmosphere. We found that these films could self-assemble into various morphologies due to the microphase separation of incompatible copolymer blocks. Atomic force microscopy confirmed the perpendicular cylindrical morphology self-assembled from PLA4.5k-b-PNIPAM5.2k-b-PS22.4k tri-BCP film under mixed solvent atmosphere of toluene/acetone (7:3, v/v). Self-assembled PLA cylinders are evenly distributed among the PS matrix and perpendicular to the film surface, with PNIPAM component taking place at the PLA/PS interphase. Furthermore, by etching the degradable PLA component, porous PS film decorated with PNIPAM “brushes” hoisting channels were generated. This work provides a facile method and detailed protocol for fabricating stimuli-responsive porous films which are promising for thermoresponsive “smart” separation technologies.