Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 1(16), p. e0238665, 2021

DOI: 10.1371/journal.pone.0238665

Links

Tools

Export citation

Search in Google Scholar

Generalized linear models provide a measure of virulence for specific mutations in SARS-CoV-2 strains

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study aims to highlight SARS-COV-2 mutations which are associated with increased or decreased viral virulence. We utilize genetic data from all strains available from GISAID and countries’ regional information, such as deaths and cases per million, as well as COVID-19-related public health austerity measure response times. Initial indications of selective advantage of specific mutations can be obtained from calculating their frequencies across viral strains. By applying modelling approaches, we provide additional information that is not evident from standard statistics or mutation frequencies alone. We therefore, propose a more precise way of selecting informative mutations. We highlight two interesting mutations found in genes N (P13L) and ORF3a (Q57H). The former appears to be significantly associated with decreased deaths and cases per million according to our models, while the latter shows an opposing association with decreased deaths and increased cases per million. Moreover, protein structure prediction tools show that the mutations infer conformational changes to the protein that significantly alter its structure when compared to the reference protein.