Published in

European Geosciences Union, Natural Hazards and Earth System Sciences, 1(21), p. 301-316, 2021

DOI: 10.5194/nhess-21-301-2021

Links

Tools

Export citation

Search in Google Scholar

Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Comprehensive and sustainable landslide risk management, including the identification of areas susceptible to landslides, requires responsible organisations to collaborate efficiently. Landslide risk management efforts are often made after major triggering events, such as hazard mitigation after the 2015 Gorkha earthquake in Nepal. There is also a lack of knowledge sharing and collaboration among stakeholders to cope with major disaster events, in addition to a lack of efficiency and continuity. There should be a system to allow for landslide information to be easily updated after an event. For a variety of users of landslide information in Nepal, the availability and extraction of landslide data from a common database are a vital requirement. In this study, we investigate the requirements to propose a concept for a web-based Nepalese landslide information system (NELIS) that provides users with a platform to share information about landslide events to strengthen collaboration. The system will be defined as a web GIS (geographic information system) that supports responsible organisations in addressing and managing different user requirements of people working with landslides, thereby improving the current state of landslide hazard and risk management in Nepal. The overall aim of this study is to propose a conceptual framework and design of NELIS. A system like NELIS could benefit stakeholders involved in data collection and landslide risk management in their efforts to report and provide landslide information. Moreover, such a system would allow for detailed and structured landslide documentation and consequently provide valuable information regarding susceptibility and hazard and risk mapping. For the reporting of landslides directly to the system, a web portal is proposed. Based on field surveys, a literature review and stakeholder interviews, a structure of the landslide database and a conceptual framework for the NELIS platform are proposed.