Published in

MDPI, Proceedings of the Royal Society of Victoria, 1(68), p. 16, 2021

DOI: 10.3390/proceedings2021068016

Links

Tools

Export citation

Search in Google Scholar

Powering E-Textiles Using a Single Thread Radio Frequency Energy Harvesting Rectenna

Journal article published in 2021 by Mahmoud Wagih ORCID, Alex S. Weddell, Steve Beeby
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Radio frequency energy harvesting (RFEH) and wireless power transfer (WPT) are increasingly seen as a method of enabling sustainable computing, as opposed to mechanical or solar EH WPT does not require special materials or resonators and can be implemented using low-cost conductors and standard semiconductor devices. This work revisits the simplest antenna design, the wire monopole to demonstrate the lowest-footprint, lowest-cost rectifying antenna (rectenna) based on a single Schottky diode. The antenna is fabricated using a single Litz-wire silk-coated thread, embroidered into a standard textile substrate. The rectifier is fabricated on a compact low-cost flexible printed circuit board (PCB) using ultra-thin polyimide copper laminates to accommodate low-footprint surface mount components. The antenna maintains its bandwidth across the 868/915 MHz license-free band on- and off-body with only −4.7 dB degradation in total efficiency in human proximity. The rectenna achieves up to 55% RF to DC efficiency with 1.8 V DC output, at 1 mW of RF power, demonstrating its suitability as a power-supply unit for ultra-low power e-textile nodes.