Dissemin is shutting down on January 1st, 2025

Published in

Lippincott, Williams & Wilkins, Neurology: Genetics, 1(7), p. e548, 2021

DOI: 10.1212/nxg.0000000000000548

Links

Tools

Export citation

Search in Google Scholar

MAP3K6 Mutations in a Neurovascular Disease Causing Stroke, Cognitive Impairment, and Tremor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ObjectiveTo describe a possible novel genetic mechanism for cerebral small vessel disease (cSVD) and stroke.MethodsWe studied a Swedish kindred with ischemic stroke and intracerebral hemorrhage, tremor, dysautonomia, and mild cognitive decline. Members were examined clinically, radiologically, and by histopathology. Genetic workup included whole-exome sequencing (WES) and whole-genome sequencing (WGS) and intrafamilial cosegregation analyses.ResultsFifteen family members were examined clinically. Twelve affected individuals had white matter hyperintensities and 1 or more of (1) stroke episodes, (2) clinically silent lacunar ischemic lesions, and (3) cognitive dysfunction. All affected individuals had tremor and/or atactic gait disturbance. Mild symmetric basal ganglia calcifications were seen in 3 affected members. Postmortem examination of 1 affected member showed pathologic alterations in both small and large arteries the brain. Skin biopsies of 3 affected members showed extracellular amorphous deposits within the subepidermal zone, which may represent degenerated arterioles. WES or WGS did not reveal any potentially disease-causing variants in known genes for cSVDs or idiopathic basal ganglia calcification, but identified 1 heterozygous variant, NM_004672.4 MAP3K6 c.322G>A p.(Asp108Asn), that cosegregated with the disease in this large family. MAP3K6 has known functions in angiogenesis and affects vascular endothelial growth factor expression, which may be implicated in cerebrovascular disease.ConclusionsOur data strongly suggest the MAP3K6 variant to be causative for this novel disease phenotype, but the absence of functional data and the present lack of additional families with this disease and MAP3K6 mutations still limit the formal evidence for the variant's pathogenicity.