Dissemin is shutting down on January 1st, 2025

Published in

Optica, Biomedical Optics Express, 3(12), p. 1375, 2021

DOI: 10.1364/boe.416884

Links

Tools

Export citation

Search in Google Scholar

Laser-generated focused ultrasound transducer using a perforated photoacoustic lens for tissue characterization

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We demonstrate a laser-generated focused ultrasound (LGFU) transducer using a perforated-photoacoustic (PA) lens and a piezoelectric probe hydrophone suitable for high-frequency ultrasound tissue characterization. The perforated-PA lens employed a centrally located hydrophone to achieve a maximum directional response at 0° from the axial direction of the lens. Under pulsed laser irradiation, the lens produced LGFU pulses with a frequency bandwidth of 6–30 MHz and high-peak pressure amplitudes of up to 46.5 MPa at a 70-µm lateral focal width. Since the hydrophone capable of covering the transmitter frequency range (∼20 MHz) was integrated with the lens, this hybrid transducer differentiated tissue elasticity by generating and detecting high-frequency ultrasound signals. Backscattered (BS) waves from excised tissues (bone, skin, muscle, and fat) were measured and also confirmed by laser-flash shadowgraphy. We characterized the LGFU-BS signals in terms of mean frequency and spectral energy in the frequency domain, enabling to clearly differentiate tissue types. Tissue characterization was also performed with respect to the LGFU penetration depth (from the surface, 1-, and 2-mm depth). Despite acoustic attenuation over the penetration depth, LGFU-BS characterization shows consistent results that can differentiate the elastic properties of tissues. We expect that the proposed transducer can be utilized for other tissue types and also for non-destructive evaluation based on the elasticity of unknown materials.