Published in

MDPI, Sustainability, 2(13), p. 899, 2021

DOI: 10.3390/su13020899

Links

Tools

Export citation

Search in Google Scholar

Hydrogen Peroxide Supplementation in Irrigation Water Alleviates Drought Stress and Boosts Growth and Productivity of Potato Plants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The present investigations aim to decipher the beneficial role of hydrogen peroxide-supplemented irrigation in imparting drought tolerance and promotion plant growth and yield of potato plants grown under two different irrigation regimes. Hydrogen peroxide injection (oxygenation) was applied at 0, 300, and 600 ppm through subsurface irrigation regimes on potato performance grown in heavy clay soil. The results indicated that oxygenation of irrigation water boosted the plant′s vegetative growth and productivity, especially at 600 ppm hydrogen peroxide coupled with deficit irrigation. Root respiration, leaf biomass, chlorophyll content, and leaf osmotic status was observed to be improved in the presence of oxygenated irrigation. A similar trend was recorded on macro-elements (nitrogen, phosphorus, potassium and calcium content), proline, and soluble carbohydrates content of leaf along with catalase enzyme activity. Individual tuber weight, tuber number and tuber yield per plant and hectare recorded higher values as responding to oxygenated irrigation (300 and 600 ppm) of water within the optimum irrigation level. While the highest value of water use efficiency (WUE) was obtained by pairing deficit irrigation with 600 ppm oxygenated water. Thus, the present work provides new insights into the importance of oxygenated irrigation in obtaining optimum yield and field performance in potato plants subjected to deficit irrigation in clayey-loamy soils.