Dissemin is shutting down on January 1st, 2025

Published in

JMIR Publications, JMIR Medical Informatics, 4(9), p. e25035, 2021

DOI: 10.2196/25035

Links

Tools

Export citation

Search in Google Scholar

Characterizing the Anticancer Treatment Trajectory and Pattern in Patients Receiving Chemotherapy for Cancer Using Harmonized Observational Databases: Retrospective Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Accurate and rapid clinical decisions based on real-world evidence are essential for patients with cancer. However, the complexity of chemotherapy regimens for cancer impedes retrospective research that uses observational health databases. Objective The aim of this study is to compare the anticancer treatment trajectories and patterns of clinical events according to regimen type using the chemotherapy episodes determined by an algorithm. Methods We developed an algorithm to extract the regimen-level abstracted chemotherapy episodes from medication records in a conventional Observational Medical Outcomes Partnership (OMOP) common data model (CDM) database. The algorithm was validated on the Ajou University School Of Medicine (AUSOM) database by manual review of clinical notes. Using the algorithm, we extracted episodes of chemotherapy from patients in the EHR database and the claims database. We also developed an application software for visualizing the chemotherapy treatment patterns based on the treatment episodes in the OMOP-CDM database. Using this software, we generated the trends in the types of regimen used in the institutions, the patterns of the iterative chemotherapy use, and the trajectories of cancer treatment in two EHR-based OMOP-CDM databases. As a pilot study, the time of onset of chemotherapy-induced neutropenia according to regimen was measured using the AUSOM database. The anticancer treatment trajectories for patients with COVID-19 were also visualized based on the nationwide claims database. Results We generated 178,360 treatment episodes for patients with colorectal, breast, and lung cancer for 85 different regimens. The algorithm precisely identified the type of chemotherapy regimen in 400 patients (average positive predictive value >98%). The trends in the use of routine clinical chemotherapy regimens from 2008-2018 were identified for 8236 patients. For a total of 12 regimens (those administered to the largest proportion of patients), the number of repeated treatments was concordant with the protocols for standard chemotherapy regimens for certain cases. In addition, the anticancer treatment trajectories for 8315 patients were shown, including 62 patients with COVID-19. A comparative analysis of neutropenia showed that its onset in colorectal cancer regimens tended to cluster between days 9-15, whereas it tended to cluster between days 2-8 for certain regimens for breast cancer or lung cancer. Conclusions We propose a method for generating chemotherapy episodes for introduction into the oncology extension module of the OMOP-CDM databases. These proof-of-concept studies demonstrated the usability, scalability, and interoperability of the proposed framework through a distributed research network.