Published in

Public Library of Science, PLoS ONE, 1(16), p. e0243358, 2021

DOI: 10.1371/journal.pone.0243358

Links

Tools

Export citation

Search in Google Scholar

Measuring office workplace interactions and hand hygiene behaviors through electronic sensors: A feasibility study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Office-based workplaces are an important but understudied context for infectious disease transmission. We examined the feasibility of two different sensors (Opos and Bluetooth beacons) for collecting person-to-person contacts and hand hygiene in office-based workplaces. Opo is an interaction sensor that captures sensor-to-sensor interactions through ultrasonic frequencies, which correspond to face-to-face contacts between study participants. Opos were additionally used to measure hand hygiene events by affixing sensors to soap and alcohol-based hand sanitizer dispensers. Bluetooth beacons were used in conjunction with a smartphone application and recorded proximity contacts between study participants. Participants in two office sites were followed for one-week in their workplace in March 2018. Contact patterns varied by time of day and day of the week. Face-to-face contacts were of shorter mean duration than proximity contacts. Supervisors had fewer proximity contacts but more face-to-face contacts than non-supervisors. Self-reported hand hygiene was substantively higher than sensor-collected hand hygiene events and duration of hand washing events was short (median: 9 seconds, range: 2.5–33 seconds). Given that office settings are key environments in which working age populations spend a large proportion of their time and interactions, a better characterization of empirical social networks and hand hygiene behaviors for workplace interactions are needed to mitigate outbreaks and prepare for pandemics. Our study demonstrates that implementing sensor technologies for tracking interactions and behaviors in offices is feasible and can provide new insights into real-world social networks and hygiene practices. We identified key social interactions, variability in hand hygiene, and differences in interactions by workplace roles. High-resolution network data will be essential for identifying the most effective ways to mitigate infectious disease transmission and develop pandemic preparedness plans for the workplace setting.