Published in

MDPI, Cells, 1(10), p. 188, 2021

DOI: 10.3390/cells10010188

Links

Tools

Export citation

Search in Google Scholar

Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities

Journal article published in 2021 by Patrizia Di Iorio, Renata Ciccarelli ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Extracellular vesicles (EVs), mainly classified as small and large EVs according to their size/origin, contribute as multi-signal messengers to intercellular communications in normal/pathological conditions. EVs are now recognized as critical players in cancer processes by promoting transformation, growth, invasion, and drug-resistance of tumor cells thanks to the release of molecules contained inside them (i.e., nucleic acids, lipids and proteins) into the tumor microenvironment (TME). Interestingly, secretion from donor cells and/or uptake of EVs/their content by recipient cells are regulated by extracellular signals present in TME. Among those able to modulate the EV-tumor crosstalk, purines, mainly the adenine-based ones, could be included. Indeed, TME is characterized by high levels of ATP/adenosine and by the presence of enzymes deputed to their turnover. Moreover, ATP/adenosine, interacting with their own receptors, can affect both host and tumor responses. However, studies on whether/how the purinergic system behaves as a modulator of EV biogenesis, release and functions in cancer are still poor. Thus, this review is aimed at collecting data so far obtained to stimulate further research in this regard. Hopefully, new findings on the impact of adenine purines/related enzymes on EV functions may be exploited in tumor management uncovering novel tumor biomarkers and/or druggable targets.