Published in

American Meteorological Society, Journal of the Atmospheric Sciences, 4(78), p. 1227-1244, 2021

DOI: 10.1175/jas-d-20-0136.1

Links

Tools

Export citation

Search in Google Scholar

Estimation of Koopman Transfer Operators for the Equatorial Pacific SST

Journal article published in 2021 by Antonio Navarra, Joe Tribbia, Stefan Klus ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractIn the last years, ensemble methods have been widely popular in atmospheric, climate, and ocean dynamics investigations and forecasts as convenient methods to obtain statistical information on these systems. In many cases, ensembles have been used as an approximation to the probability distribution that has acquired more and more a central role, as the importance of a single trajectory, or member, was recognized as less informative. This paper shows that using results from the dynamical systems and more recent results from the machine learning and AI communities, we can arrive at a direct estimation of the probability distribution evolution and also at the formulation of predictor systems based on a nonlinear formulation. The paper introduces the theory and demonstrates its application to two examples. The first is a one-dimensional system based on the Niño-3 index; the second is a multidimensional case based on time series of monthly mean SST in the Pacific. We show that we can construct the probability distribution and set up a system to forecast its evolution and derive various quantities from it. The objective of the paper is not strict realism, but the introduction of these methods and the demonstration that they can be used also in the complex, multidimensional environment typical of atmosphere and ocean applications.