Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 2(21), p. 681-694, 2021

DOI: 10.5194/acp-21-681-2021

Links

Tools

Export citation

Search in Google Scholar

Optical and hygroscopic properties of black carbon influenced by particle microphysics at the top of the anthropogenically polluted boundary layer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aerosols at the top of the planetary boundary layer (PBL) could modify its atmospheric dynamics by redistributing the solar radiation and start to be activated to form low-level cloud at this layer. Black carbon (BC), as an aerosol component efficiently absorbing solar radiation, can introduce heating and positive radiative effects at this sensitive layer, especially in the polluted PBL over the continent. This study presents continuous measurements of detailed BC properties at a mountain site located at the top of the polluted PBL over the North China Plain, during seasons (3 and 4 weeks of data during winter and summer, respectively) with contrasting emission structure and meteorology. The pollution level was persistently influenced by local surface anthropogenic emission on a daily basis through daytime convective mixing, but the concentration was also enhanced or diluted depending on air mass direction, defined as a neutral, polluted and diluted PBL, respectively. Winter was observed to have a higher BC mass fraction (4 %–8 %) than summer (2 %–7 %). By resolving the detailed particle size-resolved mixing state of BC in optical and hygroscopic models, we found an enhanced BC mass absorption cross section (MACBC) for the polluted PBL (up to 13 m2 g−1 at λ = 550 nm), which was 5 % higher during summer than winter due to a smaller BC core size. The higher BC mass fraction in winter corresponded to a lower single-scattering albedo by 0.03–0.09 than summer, especially the lowest for the diluted winter PBL (0.86 ± 0.02). The water supersaturation (SS) required to activate half the number of BC decreased from 0.21 % ± 0.08 % to 0.1 % ± 0.03 % for the winter diluted and polluted PBL and from 0.22 % ± 0.06 % to 0.17 % ± 0.05 % for summer. Notably, at the top of the anthropogenically polluted PBL in both seasons, the enlarged BC with enhanced absorption capacity could also be efficiently droplet activated; e.g. winter (summer) BC with an MAC of 9.84 ± 1.2 (10.7 ± 1) m2 g−1 could be half activated at SS = 0.13 % ± 0.06 % (0.18 % ± 0.05 %). This BC at the top of the PBL can more directly interact with the free troposphere and be transported to a wider region, exerting important direct and indirect radiative impacts.