Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Microsystems and Nanoengineering, 1(7), 2021

DOI: 10.1038/s41378-020-00235-w

Links

Tools

Export citation

Search in Google Scholar

Self-powered ammonia synthesis under ambient conditions via N2 discharge driven by Tesla turbine triboelectric nanogenerators

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAmmonia synthesis using low-power consumption and eco-friendly methods has attracted increasing attention. Here, based on the Tesla turbine triboelectric nanogenerator (TENG), we designed a simple and effective self-powered ammonia synthesis system by N2 discharge. Under the driving of the simulated waste gas, the Tesla turbine TENG showed high rotation speed and high output. In addition, the performance of two Tesla turbine TENGs with different gas path connections was systematically investigated and discussed. A controllable series-parallel connection with the control of gas supply time was also proposed. Taking advantage of the intrinsic high voltage, corona discharge in a N2 atmosphere was simply realized by a Tesla turbine TENG. With the flow of N2, the generated high-energy plasma can immediately react with water molecules to directly produce ammonia. The self-powered system achieved a yield of 2.14 μg h−1 (0.126 μmol h−1) under ambient conditions, showing great potential for large-scale synthesis.