Dissemin is shutting down on January 1st, 2025

Published in

arXiv, 2021

DOI: 10.48550/arxiv.2108.13292

Elsevier, Nano Energy, (82), p. 105767, 2021

DOI: 10.1016/j.nanoen.2021.105767

Links

Tools

Export citation

Search in Google Scholar

Paired Ru–O–Mo ensemble for efficient and stable alkaline hydrogen evolution reaction

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Electrocatalytic hydrogen evolution reaction (HER) in alkaline media is a promising electrochemical energy conversion strategy. Ruthenium (Ru) is an efficient catalyst with a desirable cost for HER, however, the sluggish H2O dissociation process, due to the low H2O adsorption on its surface, currently hampers the performances of this catalyst in alkaline HER. Herein, we demonstrate that the H2O adsorption improves significantly by the construction of Ru-O-Mo sites. We prepared Ru/MoO2 catalysts with Ru-O-Mo sites through a facile thermal treatment process and assessed the creation of Ru-O-Mo interfaces by transmission electron microscope (TEM) and extended X-ray absorption fine structure (EXAFS). By using Fourier-transform infrared spectroscopy (FTIR) and H2O adsorption tests, we proved Ru-O-Mo sites have tenfold stronger H2O adsorption ability than that of Ru catalyst. The catalysts with Ru-O-Mo sites exhibited a state-of-the-art overpotential of 16 mV at 10 mA cm-2 in 1 M KOH electrolyte, demonstrating a threefold reduction than the previous bests of Ru (59 mV) and commercial Pt (31 mV) catalysts. We proved the stability of these performances over 40 hours without decline. These results could open a new path for designing efficient and stable catalysts.