Published in

Oxford University Press, Briefings in Functional Genomics, 2(20), p. 125-134, 2021

DOI: 10.1093/bfgp/elaa027

Links

Tools

Export citation

Search in Google Scholar

Distinct evolutionary pathways for the synthesis and function of tRNA modifications

Journal article published in 2021 by Satoshi Kimura ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Transfer ribonucleicacids (RNAs) (tRNAs) are essential adaptor molecules for translation. The functions and stability of tRNAs are modulated by their post-transcriptional modifications (tRNA modifications). Each domain of life has a specific set of modifications that include ones shared in multiple domains and ones specific to a domain. In some cases, different tRNA modifications across domains have similar functions to each other. Recent studies uncovered that distinct enzymes synthesize the same modification in different organisms, suggesting that such modifications are acquired through independent evolution. In this short review, I outline the mechanisms by which various modifications contribute to tRNA function, including modulation of decoding and tRNA stability, using recent findings. I also focus on modifications that are synthesized by distinct biosynthetic pathways.