Links

Tools

Export citation

Search in Google Scholar

The Electronic Influence on the Active Site-Directed Inhibition of Acetylcholinesterase by N-aryl-Substituted Succinimides

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

A computational docking approach, in combination with the Hammett relationship, has been employed to evaluate the electronic influence of substituents on ligand binding and the active site-directed inhibitory potency on acetylcholinesterase using nine N-aryl-substituted succinimides. Our results indicate that electronwithdrawing groups attached to benzene moiety of the compounds favor the inhibitory potency while electron-donating groups do not. This fact was confirmed by performing kinetic experiments on acetylcholinesterase from Electrophorus electricus; the experiments showed that para-substituted-NO2 compound inhibits better than para-substituted-OMe and ¿H derivatives. This approach may be useful for the rationalization of drugs design, as well as the mechanism of the active site.