Published in

Journal of Biomaterials and Tissue Engineering, 12(10), p. 1731-1737, 2020

DOI: 10.1166/jbt.2020.2492

Links

Tools

Export citation

Search in Google Scholar

Self-Assembly of a Multi-Functional Hydrogel from a Branched Peptide Amphiphile and Its Effects on Bone Marrow Mesenchymal Stem Cells

Journal article published in 2020 by Li Yixiu, Yin Peiyi, Wu Kai, Wang Xiaomei, Song Yulin
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, a branched peptide amphiphile (B-PA) presenting RGD and IKVAV motifs was fabricated by solid-phase peptide synthesis and self-assembled into a nanofiber hydrogel in which rabbit bone marrow mesenchymal stem cells (BMSCs) were seeded and cultured for seven days. Specifically, 1 wt% B-PA was self-assembled into a nanofiber hydrogel with the addition of culture medium and observed using transmission electron microscopy. The B-PA with a molecular weight of 2191.72 and a purity >95% self-assembled into nanofibers with diameters from 6 to 8 nm and lengths ranging from hundreds of nanometers to several micrometers. BMSCs were acquired from rabbits using differential adherence methods and identified by flow cytometry for cell phenotype. The cells were stained with calcein acetoxymethyl ester/propidium iodide to assess cell viability, CCK-8 to assess cell cytotoxicity and proliferation, and Hochest 33342 to assess cell adhesion. They were also immunofluorescently labeled with microtubule-associated protein-2 (MAP-2), neurofilament protein (NF), and glial fibrillary acidic protein (GFAP) to assess cell transdifferentiation. The B-PA hydrogel provided platform upon which the CD29+/44+ cells adhered and proliferated, and it induced the transdifferentiation of cells into neural cells expressing the markers MAP-2, NF, and GFAP. The hydrogel exhibited good cytocompatibility and multiple functions, and may therefore serve as a scaffold for neural tissue engineering.